Iterative Monte Carlo path integral with optimal grids from whole-necklace sampling.

نویسندگان

  • Vikram Jadhao
  • Nancy Makri
چکیده

The efficiency of the iterative Monte Carlo (IMC) path integral methodology for complex time correlation functions is increased through the use of optimal grids, which are sampled from paths that span the entire path integral necklace. The two-bead marginal distributions required in each step of the IMC iteration are obtained from a recursive procedure. Applications to one-dimensional and multi-dimensional model systems illustrate the enhancement in stability effected by the use of grids based on whole-necklace sampling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Monte Carlo with bead-adapted sampling for complex-time correlation functions.

In a recent communication [V. Jadhao and N. Makri, J. Chem. Phys. 129, 161102 (2008)], we introduced an iterative Monte Carlo (IMC) path integral methodology for calculating complex-time correlation functions. This method constitutes a stepwise evaluation of the path integral on a grid selected by a Monte Carlo procedure, circumventing the exponential growth of statistical error with increasing...

متن کامل

Ab-initio path integral techniques for molecules

Path integral Monte Carlo with Green’s function analysis allows the sampling of quantum mechanical properties of molecules at finite temperature. While a high-precision computation of the energy of the Born-Oppenheimer surface from path integral Monte Carlo is quite costly, we can extract many properties without explicitly calculating the electronic energies. We demonstrate how physically relev...

متن کامل

Iterative Monte Carlo for quantum dynamics.

We present a fully quantum mechanical methodology for calculating complex-time correlation functions by evaluating the discretized path integral expression iteratively on a grid selected by a Monte Carlo procedure. Both the grid points and the summations performed in each iteration utilize importance sampling, leading to favorable scaling with the number of particles, while the stepwise evaluat...

متن کامل

Permutation sampling in Path Integral Monte Carlo

Abstract A simple algorithm is described to sample permutations of identical particles in Path Integral Monte Carlo (PIMC) simulations of continuum many-body systems. The sampling strategy illustrated here is fairly general, and can be easily incorporated in any PIMC implementation based on the staging algorithm. Although it is similar in spirit to an existing prescription, it differs from it i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 133 11  شماره 

صفحات  -

تاریخ انتشار 2010